

Technoeconomics of Energy Systems Laboratory (TEESlab)

University of Piraeus Research Centre (UPRC)

Allow users to perform **participatory simulations** aiming to provide answers to many **"what if"** scenarios.

Models that can be coupled (i.e., **soft-** and/ or **hard-**linked) to provide answers to **complex** scientific/research questions.

Agent-based Technology adOption Model (ATOM)

Early Majority Late Majority Laggards

Electricity & Building sectors

Correlating technology adoption with its **value** to consumers

Expected effectiveness of technology adoption under **policy schemes** of interest

© No2ndPrize Ltd 2016

Quantifying uncertainties related to consumers' decision-making process (i.e., behavioral uncertainty)

Key Model Specifications AM COMPACT

Calibration

3 modules

Sensitivity analysis

Scenario analysis

Historical data on PV capacity addition

Feed-in-Tariffs scheme in Greece (2009-2013)

*Inclusion of different **socioeconomic**& **demographic profiles**(e.g., income, education level, consumption profiles, etc.)

Initial value ranges

Set of agent-related parameters*

Set of agent-related parameters

Initial value ranges

- 1-step Global Sensitivity Analysis (Sobol method)
- Monte-Carlo simulations
- Historical matching method ,

Final value ranges

Hybrid variance-based sensitivity analysis

Set of agent-related parameters

New small-scale PV capacity addition

different **realistic behavioral profiles** of agents (consumers)

Final value ranges

Poli(e.g., Net-Metering, Self-Consumption, etc.) **cy schemes**

Diffusion scenarios of **energy communities** (e.g., 2020-2030)

The three main ways that grassroots innovations, as ecovillages, tend to influence larger society are through (1) **replication**, (2) **growth in scale**, and (3) **translation**.

- Replication as the growth of the number of energy communities
- <u>Growth in scale</u> as either the growth of specific energy communities (case studies) or the growth of their influence through partnerships & programs
- <u>Translation</u> as the adoption of energy community policies & practices by mainstream society and institutions

Indicative Applications (2/2)

Adoption of small-scale PV by citizens towards 2030 in Greece based on 3 storylines of potential socio-political developments

developments

Net-metering

directed storyline

Government-

People-powered storyline

Market-driven storyline

Market-driven storyline

Governmentdirected storyline

People-powered storyline

Agent related parameters

Market related parameters

Policy schemes

Applied Energy Volume 253, 1 December 2019, 113795

An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers

Vassilis Stavrakas, Sotiris Papadelis, Alexandros Flamos A El

Energy Policy

Volume 139, April 2020, 111350

A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways

Serafeim Michas, Vassilis Stavrakas, Sotiris Papadelis, Alexandros Flamos 🔍 🖼

Energy Research & Social Science Volume 92, October 2022, 102775

Original research article

Why energy models should integrate social and environmental factors: Assessing user needs, omission impacts, and real-word accuracy in the European Union

Diana Süsser *, Nick Martin *, Vassilo Stavrakas *, Hannes Gaschnig *, Laura Taleno-Peiris *, Alexandros Flamos *
"Cristina Madrid-López * A. El., Johan Lilliestam *.*

Report on model application in the case studies: challenges and lessons learnt: Deliverable 7.2. Sustainable Energy Transitions Laboratory (SENTINEL) project

Serenkern Michael & Nikos Kleanthie, & Idealie Staunskas, America Scholine & Anchol Caglact, & Alexandros Flancos, & Dennos Floan, & Serentos Plancos, & Cennoles Klarles, & Dana Sosser, Jona Luffester, & Alpuel Chang, & Jacob Dinis Freducter, & Mayer Chang, & Jacob Dinis Green, & Dana Green, & Dana Cage, Plancet & Brain Flores, & Denno Report, & Dana Cage, & Dana

Dynamic high-Resolution dEmand-sidE Management (DREEM) model

Energy demand simulation model

Key Model Specifications

Outputs at a high resolution (1 minute)

Occupant **behavior** & determination of **end-use qualities**

Linking to **other** models & **easily** re-used

Modular structure

Bottom-up structure

Linking to **economic** development & **technological** breakthrough

Model Architecture

Main **principles** of **component**-& **modular**-based system modeling approach

- interdependence of decisions within modules
- independence of decisions
 between modules
- hierarchical dependence of modules on components embodying <u>standards</u> & <u>design</u> rules

Modular *structure*

Novelty (2/2) AMCOMPACT

- Incremental modeling: sub-models in multiple levels
- Control capabilities: managing the complexity of large systems
- Realistic representations of dynamic systems
- Fast development & simulations:
 computational efficiency

Wide range of applications on Europe's energy transition towards 2050

Model parameterisation (1/4) AM COMPACT

Weather-Climate data

Climate.OneBuilding.Org

Typical Meteorological Years (TMY) for **several regions** in the demo countries.

Q₁: Specify regions to use more accurate weather data

Model parameterisation (2/4) AM COMPACT

Construction year Type of building No. of floors **Total floor area, Height Total roof area** Total walls area **Total windows area U-values**

Q₂: Custom building characteristics & Existing typologies

Model parameterisation (3/4) AM COMPACT

active" Q₃: Occupancy/Activity data

National Household Budget Surveys (HBS)

Model parameterisation (4/4) AM COMPACT

National Household Budget Surveys (HBS)

Survey on energy consumption in households (SECH) data

Appliances	Ownership rate (%)	Nominal power (W)	Time Of Use (TOU) (days/ week)	Time Of Use (TOU) (hours/day)	Weekly consumption (kWh/ week)
Cooking					
Hobs	91.82	1600	1.56	1.92	4.77
Electric cooker with oven	86.89	2150	2.86	3.21	19.75
Microwave oven	33.33	1150	2.13	1.03	2.51
Foaster	61.80	1300	2.52	0.20	0.66
Coffee maker	36.91	1100	2.32	1.00	2.55
Water boiler	31.41	1250	1.79	1.00	2.23
Cooker hoods	89.64	108	1.56	1.89	0.32
Lighting					
ncandescent lamp (x6)	80.54	80	7.00*	3	1.68
ED lamp (x2)	4.75	10	7.00*	2	0.14
Night light (x1)	95.01	1	7.00*	8	0.06
Other appliances					
Fridge-freezer	80.57	150	7.00	24.00	25.20
Dishwasher	29.02	1350	3.09	0.52	4.95
Washer (without tumble dryer)	94.30	500	2.46	0.50	1.76
ron	94.98	1000	1.82	0.31	2.15
Vacuum cleaner	78.06	450	2.19	0.21	0.67
Color-television set	99.03	100	7.00	5.19	3.63
OVD or VCR	37.05	40	2.51	0.39	0.11
Stereo	30.59	24	4.21	1.00	0.17
Computer (desktop, laptop, tablet, etc.)	41.84	300	3.06	0.53	1.10
Peripheral devices (printer, scanner, etc.)	13.91	50	0.56	0.13	0.05
internet devices (printer, scanner, etc.)	38.21	10	7.00	24.00	1.68
Video Game Consoles	6,36	160	3.73	0.77	0.86
Charger; mobile phone charger	99.36	1	6.58	1.27	0.08

Indicative appliance data for the case of Greece

Energy transition in the European residential sector (1/3)

Performing modelling analysis to assess the **energy saving potential** & **cost-effectiveness** of **nine** (9) different Energy Efficiency Measures (**EEMs**),

in the context of eight (8) European countries.

Exterior Wall
Insulation of the
building envelope

Roof Insulation to reduce the heat load of the buildings under

EEM #3

Thermal upgrade through **Double-glazed Windows**

EEM #4

Smart Thermostat: Setback states without compromising thermal comfort of the occupants

Replacement of an oilfired boiler with a modern oil condensing boiler

EEM #6

Replacement of an oilfired boiler with a natural gas condensing boiler

EEM #7

Replacement of an oil-fired boiler with a with a biomass boiler

EEM #8

Replacement of an **oilfired** boiler with a high temperature **heat pump**

EEM #9

Replacement of traditional incandescent light bulbs with LED ones

Tzani et al. (under preparation). SENTINEL working paper. Available online here.

Energy transition in the European residential sector (2/3) AMCOMPACT

$$Levelized \ Cost \ of \ Saved \ Energy = \frac{(\textit{CRF} * Cost_{investment}) + Cost_{0 \& \textit{M}}}{\textit{Energy Svings (kWh)}}$$

Capital Recovery Factor (CRF) =
$$\frac{r * (1+r)^{N}}{(1+r)^{N}-1}$$

Tzani et al. (under preparation). SENTINEL working paper. Available online here.

Energy transition in the European residential sector (3/3)

How the different construction periods (building characteristics) & geographical contexts can affect the energy-saving potential & cost-effectiveness of different EEMs?

2 categories of buildings based on their construction period

<u>Category I:</u> buildings that have been built <u>before 1981</u> (the requirements for thermal insulation of buildings was set after 1981).

<u>Category II:</u> Building that have been built in the period <u>1981-</u>2006.

- Energy-saving potential of the EEMs is commonly higher for buildings in Category I.
- The replacement of an old heating system with a heat pump is among the most cost-effective measures for all countries, while also illustrates high energy-saving potential.
- Investing in **more energy-efficient diesel boilers** is shown to be the **least cost-effective measure** in most cases.
- Double-glazed windows rank low in terms of costeffectiveness in many cases.

Tzani et al. (under preparation). SENTINEL working paper. Available online here.

Energy Transition in the Greek Residential Sector

■2025 ■2030 ■2035 ■2040 ■2045

No decarbonisation by 2050 with the renovation rate foreseen by NECP

2,000

1.000

Scenario 1: "Baseline - 1

"Baseline - Natural gas as a transition fuel"

Scenario 2:

"Investing in heat pumps & phasing out of natural gas #1"

Scenario 3:

"Investing in heat pumps & phasing out of natural gas #2"

Scenario 4:

"Complete independence from natural gas as soon as possible" National scale

Greece
2.5% annual renovation rate to achieve decarbonisation by 2050

= 2030

Energy mix & savings (ktoe) - "Scenario 2"

■2035 ■2040 ■2045

3.5% annual renovation rate to achieve **decarbonisation** by 2040

- If decarbonisation is the target...!

Scenario 5: "Decarbonisation by 2050"

6 Scenario 6: "Decarbonisation by 2040"

Stavrakas et al. (under preparation). SENTINEL working paper. Presented @ECEMP_2022; recordings available here. Presentation available online here.

■2022 ■2025

= 2030

Energy Transition in the Greek Residential Sector

New natural gas infrastructures at the region of Peloponnese.

Just Transition pathways in Coal and Carbon Intensive Regions (CCIRs)

Decarbonisation pathways in the residential sector in Greece at **regional**, and **local** scales considering **national targets** & planning regarding **new natural gas** infrastructure/**phase-out** of lignite.

Energy Conversion and Management

Volume 205, 1 February 2020, 112339

Energy Research & Social Science

Volume 90, August 2022, 102662

A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector

Vassilis Stavrakas, Alexandros Flamos 🖰 🖾

Energy Policy

Volume 161, February 2022, 112759

Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece

Konstantinos Koasidis ^a 🙎 🖾 , Vangelis Marinakis ^a , Alexandros Nikas ^a , Katerina Chira ^a , Alexandros Flamos ^b . Haris Doukas ^a

Souran Chatterjee ^a $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$, Vassilis Stavrakas ^b, Gabriel Oreggioni ^c, Diana Süsser ^d, Iain Staffell ^c, Johan Lilliestam ^{d, e}, Gergely Molnar ^{a, f}, Alexandros Flamos ^b, Diana Ürge-Vorsatz ^a

Report on model application in the case studies: challenges and lessons learnt:
Deliverable 7.2. Sustainable Energy Transitions
Laboratory (SENTINEL) project

Serafeim Michas; Nikos Kleanthis; Vassilis Stavrakas; Amanda Schibline; Andrzej Ceglarz; Alexandros Flamos; Dimitra Tzani; Dimitris Papantonis; Leonidas Kliafas; Diana Süsser, Johan Lilliestam; Miguel Chang; Jakob Zinck Thellufsen; Henrik Lund; Souran Chatterjee; Gergely Molnar; Diána Ürge-Vorsatz; Bryn Pickering; Raffaele Sgarlato; Nieves Casas Ferrús; Cornelis Savelsberg; Cristina Madrid López; Nick Martin; Laura Talens Peiró; Gabriel Oreggioni; Jakob Mayer; Staffael Sachner; Karl Steininger; Statos Mikropoulos; Hsing-Hsuan Chen; Mark Roelfsema

Email us:

Thank you!

#iam-compact

